Analysis on Manifolds (WBMA013-05)- Resit

Friday 9 April 2021, 8:30h-11:30h

This exam consists of **3** problems.

Usage of the theory and examples from the lecture notes is allowed. Give a precise

reference to the theory and/or exercises you use for solving the problems. You get 10 points for free.

Problem 1. (8 + 8 + 7 + 7 = 30 points)

Let $M = \mathbb{R}^3$, $\eta := dz - \frac{1}{2}(xdy - ydx) \in \Omega^1(M)$ and $X, Y, Z \in \mathfrak{X}(\mathbb{R}^3)$ defined by $X := \frac{\partial}{\partial x} - \frac{y}{2}\frac{\partial}{\partial z}$, $Y := \frac{\partial}{\partial y} + \frac{x}{2}\frac{\partial}{\partial z}$ and $Z := \frac{\partial}{\partial z}$.

- (a) Show that D = ker(η) is a linear subspace of TR³; Hint: if you are not sure what to do, you can proceed as follows. For q ∈ M, denote D_q := ker(η_q) ⊂ T_qM. For all q ∈ M, show that D_q is closed under addition and multiplication, and contains 0_q.
- (b) Show that $\{X, Y\}$ is a basis for \mathcal{D} ;
- (c) Compute [X, Y].
- (d) Is the vector field [X, Y] an element of \mathcal{D} ? Justify your answer.

Problem 2. (7 + 8 + 8 + 7 = 30 points)

In this exercise we keep using the same notation of Problem 1. Let $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ be the projection on the (x, y)-plane, that is, $\pi(x, y, z) = (x, y)$.

(a) Show that $\eta \wedge d\eta$ defines a volume form on *M*.

Let $\gamma = (\gamma^1, \gamma^2, \gamma^3) : I \subset \mathbb{R} \to \mathbb{R}^3$ be a smooth curve in *M* such that the following holds: (1) for all $t \in I$, $\dot{\gamma}(t) \in \mathcal{D}_{\gamma(t)}$; (2) $\pi \circ \gamma = (\gamma^1, \gamma^2)$ is a closed (possibly self-intersecting) planar curve.

- (b) Show that ∫_γ ¹/₂(xdy ydx) coincides with the signed area of the region Ω ⊂ ℝ² bounded by the curve π ∘ γ;
 Hint: what is the planar integral to compute the area of Ω?
- (c) Show that condition (1) in the definition of γ implies that γ³(t) is proportional to the signed area of the region Ω bounded by π ∘ γ on the (x, y)-plane;
 Hint: compute η_{γ(t)}(γ(t)) = 0 *and integrate the resulting expression*
- (d) Show that γ is a closed curve in *M* if and only the signed area of Ω vanishes.

Problem 3. (10 + 10 + 10 = 30 points)

Let now *M* be a smooth manifold of dimension 2n equipped with a nondegenerate closed form $\omega \in \Omega^2(M)$. Note that if *V* is a vector space, we say that $\omega: V \times V \to \mathbb{R}$ is *non-degenerate* if $\omega(u, v) = 0$ for all $v \in V$ implies u = 0.

(a) Show that for any $H \in C^\infty(M)$ there exists a unique vector field $X_{H,\omega}$ such that

$$_{X_{H,\omega}}\omega = dH.$$
 (1)

Hint: show that $X \mapsto \iota_X \omega$: $TM \to T^*M$ *defines an isomorphism.*

ı

(b) Assume that $X_{H,\omega}$ is complete and let $\phi_t := \phi_t^{X_{H,\omega}}$ denote its flow. Prove that the *H* is constant along the flow of X_H , that is $\frac{d}{dt}(\phi_t^*H) = 0$.

Let now $M = T^*N$ be the cotangent bundle of a smooth *n*-manifold *N*. Any chart (U,ϕ) of *M* induces a chart $(T^*U,\tilde{\phi})$ on T^*M whose local coordinates are of the form $(x^1,\ldots,x^n,\xi_1,\ldots,\xi_n)$, where (x^i) denote the local coordinates on $U \subset M$ and (ξ_i) the components of the local expression of covectors $\xi_i dx^i$.

(c) Assume that with such local coordinates on U, $\omega = d\xi_i \wedge dx^i$. Compute X_H in local coordinates. *Hint: write* $X_H = A^i \frac{\partial}{\partial x^i} + B_i \frac{\partial}{\partial \xi_i}$.