Analysis on Manifolds (WBMA013-05)- Resit

Friday 9 April 2021, 8:30h-11:30h

This exam consists of $\mathbf{3}$ problems.
Usage of the theory and examples from the lecture notes is allowed. Give a precise reference to the theory and/or exercises you use for solving the problems. You get 10 points for free.

Problem 1. (8+8+7+7=30 points)

Let $M=\mathbb{R}^{3}, \eta:=d z-\frac{1}{2}(x d y-y d x) \in \Omega^{1}(M)$ and $X, Y, Z \in \mathfrak{X}\left(\mathbb{R}^{3}\right)$ defined by $X:=$ $\frac{\partial}{\partial x}-\frac{y}{2} \frac{\partial}{\partial z}, Y:=\frac{\partial}{\partial y}+\frac{x}{2} \frac{\partial}{\partial z}$ and $Z:=\frac{\partial}{\partial z}$.
(a) Show that $\mathscr{D}=\operatorname{ker}(\eta)$ is a linear subspace of $T \mathbb{R}^{3}$;

Hint: if you are not sure what to do, you can proceed as follows. For $q \in M$, denote $\mathscr{D}_{q}:=\operatorname{ker}\left(\eta_{q}\right) \subset T_{q} M$. For all $q \in M$, show that \mathscr{D}_{q} is closed under addition and multiplication, and contains 0_{q}.
(b) Show that $\{X, Y\}$ is a basis for \mathscr{D};
(c) Compute $[X, Y]$.
(d) Is the vector field $[X, Y]$ an element of \mathscr{D} ? Justify your answer.

Problem 2. $(7+8+8+7=30$ points)

In this exercise we keep using the same notation of Problem 1 . Let $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the projection on the (x, y)-plane, that is, $\pi(x, y, z)=(x, y)$.
(a) Show that $\eta \wedge d \eta$ defines a volume form on M.

Let $\gamma=\left(\gamma^{1}, \gamma^{2}, \gamma^{3}\right): I \subset \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a smooth curve in M such that the following holds: (1) for all $t \in I, \dot{\gamma}(t) \in \mathscr{D}_{\gamma(t)}$; (2) $\pi \circ \gamma=\left(\gamma^{1}, \gamma^{2}\right)$ is a closed (possibly selfintersecting) planar curve.
(b) Show that $\int_{\gamma} \frac{1}{2}(x d y-y d x)$ coincides with the signed area of the region $\Omega \subset \mathbb{R}^{2}$ bounded by the curve $\pi \circ \gamma$;
Hint: what is the planar integral to compute the area of Ω ?
(c) Show that condition (1) in the definition of γ implies that $\gamma^{3}(t)$ is proportional to the signed area of the region Ω bounded by $\pi \circ \gamma$ on the (x, y)-plane;
Hint: compute $\eta_{\gamma(t)}(\dot{\gamma}(t))=0$ and integrate the resulting expression
(d) Show that γ is a closed curve in M if and only the signed area of Ω vanishes.

Problem 3. $(10+10+10=30$ points $)$
Let now M be a smooth manifold of dimension $2 n$ equipped with a nondegenerate closed form $\omega \in \Omega^{2}(M)$. Note that if V is a vector space, we say that $\omega: V \times V \rightarrow \mathbb{R}$ is non-degenerate if $\omega(u, v)=0$ for all $v \in V$ implies $u=0$.
(a) Show that for any $H \in C^{\infty}(M)$ there exists a unique vector field $X_{H, \omega}$ such that

$$
\begin{equation*}
\iota_{X_{H, \omega}} \omega=d H . \tag{1}
\end{equation*}
$$

Hint: show that $X \mapsto \iota_{X} \omega: T M \rightarrow T^{*} M$ defines an isomorphism.
(b) Assume that $X_{H, \omega}$ is complete and let $\phi_{t}:=\phi_{t}^{X_{H, \omega}}$ denote its flow. Prove that the H is constant along the flow of X_{H}, that is $\frac{d}{d t}\left(\phi_{t}^{*} H\right)=0$.

Let now $M=T^{*} N$ be the cotangent bundle of a smooth n-manifold N. Any chart (U, ϕ) of M induces a chart $\left(T^{*} U, \widetilde{\phi}\right.$) on $T^{*} M$ whose local coordinates are of the form ($x^{1}, \ldots, x^{n}, \xi_{1}, \ldots, \xi_{n}$), where (x^{i}) denote the local coordinates on $U \subset M$ and $\left(\xi_{i}\right)$ the components of the local expression of covectors $\xi_{i} d x^{i}$.
(c) Assume that with such local coordinates on $U, \omega=d \xi_{i} \wedge d x^{i}$. Compute X_{H} in local coordinates.
Hint: write $X_{H}=A^{i} \frac{\partial}{\partial x^{i}}+B_{i} \frac{\partial}{\partial \xi_{i}}$.

